
- 4. The value of entropy at absolute zero of temperature would be
 - (A) zero for all the materials
 - (B) finite for all the materials
 - (C) zero for some materials and non-zero for others
 - (D) unpredictable for any material
- 5. A circuit and the signal applied at its input terminals (V_i) are shown in figure below. Which one of the options correctly describes the output waveform (V_0) . (Assume all the devices used are ideal).

- 6. Consider a beam of light of wavelength λ incident on a system of a polarizer and an analyzer. The analyzer is oriented at 45° to the polarizer. When an optical component is introduced between them, the output intensity becomes zero. (Light is incident normally on all components). The optical component is
 - (A) a full-wave plate
 - (B) a half-wave plate
 - (C) a quarter-wave plate
 - (D) an ordinary glass plate
- 7. A small loop of wire of area $A=0.01\,\mathrm{m}^2$, $N=40\,$ turns and resistance $R=20\,\Omega$ is initially kept in a uniform magnetic field \boldsymbol{B} in such a way that the field is normal to the plane of the loop. When it is pulled out of the magnetic field, a total charge of $Q=2\times10^{-5}\,\mathrm{C}$ flows through the coil. The magnitude of the field \boldsymbol{B} is
 - (A) $1 \times 10^{-3} \,\mathrm{T}$
 - (B) $4 \times 10^{-3} \,\text{T}$
 - (C) zero
 - (D) unobtainable, as the data is insufficient
- 8. If M_e , M_p and M_H are the rest masses of electron, proton and hydrogen atom in the ground state (with energy -13.6 eV), respectively, which of the following is exactly true? (c is the speed of light in free space)
 - $(A) \qquad M_H = M_p + M_e$
 - (B) $M_{\rm H} = M_{\rm p} + M_{\rm e} \frac{13.6 \text{ eV}}{c^2}$
 - (C) $M_H = M_p + M_e + \frac{13.6 \text{ eV}}{c^2}$
 - (D) $M_{H} = M_{p} + M_{e} + K$, where $K \neq \pm \frac{13.6 \text{ eV}}{c^{2}}$ or zero